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Abstract: In the present article we deal with the Dirichlet problem for a class of degenerate anisotropic elliptic
second-order equations with L !-right-hand sides in a bounded domain of R” (n > 2). This class is described by
the presence of a set of exponents ¢1, ..., g, and a set of weighted functions v1,..., v, in growth and coercitivity
conditions on coefficients of the equations. The exponents ¢; characterize the rates of growth of the coefficients
with respect to the corresponding derivatives of unknown function, and the functions v; characterize degeneration or
singularity of the coefficients with respect to independent variables. Our aim is to investigate the existence of entropy
solutions of the problem under consideration.
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1 Introduction

During the last twenty years the research on the existence and properties of solutions for nonlinear equations and
variational inequalities with L!-data or measures as data were intensively developed. As is generally known, an
effective approach to the solvability of second-order equations in divergence form with L!-right-hand sides has
been proposed in [1]. In this connection we also mention a series of other close investigations for nondegenerate
isotropic nonlinear second-order equations with L!-data and measures, entropy and renormalized solutions [2—10].

As for the solvability of nonlinear elliptic second-order equations with anisotropy and degeneracy (with respect
to the independent variables), we note the following works. The existence of a weak (distributional) solution to the
Dirichlet problem for a model nondegenerate anisotropic equation with right-hand side measure was established
in [11]. The existence of weak solutions for a class of nondegenerate anisotropic equations with locally integrable
data in R” (n > 2) was proved in [12], and an analogous existence result concerning the Dirichlet problem for
a system of nondegenerate anisotropic equations with measure data was obtained in [13]. Moreover, in [14], the
existence of weak solutions to the Dirichlet problem for nondegenerate anisotropic equations with right-hand sides
from Lebesgues spaces close to L! was established. Solvability of the Dirichlet problem for degenerate isotropic
equations with L'-data and measures as data was studied in [15-19]. Remark that in [15, 17], the existence of
entropy solutions to the given problem was proved in the case of L !-data, and in [16], the existence of a renormalized
solution of the problem for the same case was established. In [16, 18, 19], the existence of distributional solutions of
the problem was obtained in the case of right-hand side measures.

Solvability of the Dirichlet problem for a class of degenerate anisotropic elliptic second-order equations with
L!-right-hand sides was studied in [20]. This class is described by the presence of a set of exponents ¢, ..., g, and
of a set of weighted functions vy, ..., v, in growth and coercitivity conditions on coefficients of the equations under
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consideration. The exponents ¢; characterize the rates of growth of the coefficients with respect to the corresponding
derivatives of unknown function, and the functions v; characterize degeneration or singularity of the coefficients
with respect to the independent variables. This is the most general situation in comparison with the above-mentioned

works: the nondegenerate isotropic case means that v; = landgq; = ¢1,i = 1, ..., n; the nondegenerate anisotropic
case means thatv; = 1,i = 1,...,n,andg;,i = 1,...,n, are generally different, and the degenerate isotropic case
means thatv; = vy,i = 1,...,n,asin[16-19] orv;,i = 1,...,n, are generally different as in [15] but ¢; = ¢,
i=1,...,n.

In [20], the theorem on the existence and uniqueness of entropy solution to the Dirichlet problem for this class of
the equations was proved. Moreover, the existence results of some other types of solutions to the given problem were
also obtained. Observe that the proofs of these theorems are based on use of some results of [21-23] on the existence
and properties of solutions of second-order variational inequalities with L!-right-hand sides and sufficiently general
constraints. Note that in [20-23] right-hand sides to the investigated variational inequalities and equations depend
on independent variables only, and belong to the class L.

The present article is devoted to the Dirichlet problem for a same class of the nonlinear elliptic second-order
equations in divergence form with degenerate anisotropic coefficients as in [20]. Here right-hand sides to the given
equations depend on independent variables and unknown function. A model example of this class is an equation

n
- Z Di(vi(x)|Diu|"i_2Diu) = F(x,u), x€Q,

i=1

where Q is a bounded domain in R” (n = 2),1 <¢q; <n,v; >0ae.inQ,v; € LIIOC(Q), (l/vl-)l/(qi_l) e LY(Q),
i=1,...,n, F:Q xR — Ris a Carathéodory function.

The main result of this paper is a theorem on the existence of entropy solutions to the Dirichlet problem for
the equations under consideration. We require an additional conditions to the function F in this theorem. Namely
F(x,u) has an arbitrary growth with respect to the second variable, and F(x,u) belongs to L1 (€) under the
fixed value of the second variable. In our case we have no opportunity to use the results [21-23] directly. We
follow a general approach for proving the above-mentioned theorem. This approach has been proposed in [1] to
the investigation on the existence and properties of solutions for nonlinear elliptic second-order equations with
isotropic nondegenerate (with respect to the independent variables) coefficients and L !-right-hand sides. In [21, 23]
this approach has been taken to the anisotropic degenerate case. Also we use some ideas of [24].

2 Preliminaries

In this section we give some results of [23] which will be used in the sequel.
Letn € N, n = 2, Q be a bounded domain in R” with a boundary 0€2, and for every i € {l,...,n} we have

gi € (1,n).
Wesetq ={q; :i =1,...,n},

—1
. . _ 1 1 . n@-=1
g— =min{q; :i =1,...,n}, q:(Z ) , q:qi_

n = gi (n—1)q
Letforeveryi € {1,...,n} v; be a nonnegative function on €2 such that v; > 0 a.e. in €2,
vi € Li (@), (1/vp)"/ =D e L(Q). (1)

Wesetv = {v; :i =1,...,n}. We denote by W1-4 (v, Q) the set of all functions u € W -1 (Q) such that for every
i e{l,...,n}wehave v;| D;u|? e L1 ().
Let | - |l1,4.,, be the mapping from W 1.4y, Q) into R such that for every functionu € W19 (v, Q)

" 1/q;
lully g0 =/|u|dx+ Z QvilDiu|qidx .
Q

i=1
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The mapping | - || 4., is a norm in W14 (v, Q), and, in view of the second inclusion of (1), the set W19 (v, Q)
is a Banach space with respect to the norm || -
CSP Q) c whi(n, Q).

[e] o]
We denote by W19 (v, Q) the closure of the set C§°(2) in space W14 (v, Q). Evidently, the set W19 (v, Q) is
o [e]
It is obvious that W19 (v, Q) c W1-1(Q).

ll1.4.1- Moreover, by virtue of the first inclusion of (1), we have

a Banach space with respect to the norm induced by the norm || - [|; , ,,-

[e]
Finally, we observe that W La(y Q) is a reflexive space. The proof of the latter statement can be found in [21].
Note that the following assertion hold.

o
Proposition 2.1. If a sequence converges weakly in W14 (v, Q), then it converges strongly in L' ().

Further, let for every k > 0 Tk : R — R be the function such that

S, if |s| <k,

T =
KO =)k Gians, if || > k.

o
By analogy with known results for nonweighted Sobolev spaces (see for instance [25]) we have: if u € W9 (v, Q)

[e]
and k > 0, then Ty (1) € W19 (v, Q) and forevery i € {1,...,n}

DiTk(u)=D,-u.l{|u|<k} a.e.in . (2)

o o
We denote by 719 (v, Q) the set of all functions 1 : @ — R such that for every k > 0, Ty (u) € W19 (v, Q).
Clearly,

Wi, Q) c Th 0. Q). 3)

For every u : 2 — R and for every x € 2 we set
k(u,x) =min{l e N: |u(x)| </}.

[e]
Definition 2.2. Letu € 79, Q) and i € {1,...,n}. Then 8;u : Q — R is the function such that for every
xeQ Sjulx)=D;iTiw.xu) (x).

[¢]
Definition 2.3. Ifu € T4 (v, Q), then Su : Q — R” is the mapping such that for every x € Q and for every
ie{l,...,n} (Bu(x)); =ux).

Now we give several propositions which will be used in the next sections.

o]
Proposition 2.4. Ler u € TV9(v, Q). Then for every k > 0 we have D; T (u) = 8;u - Liju|<ky a.e in L,
i=1,...,n

[e]
Ifue Wl'q(v, Q), then forevery i € {1,...,n} S;u = D;ju ae.in Q.
[e] o [e]
Proposition 2.5. Letu € T"9(v, Q) and w € W94 (v, Q) N L>®(Q). Then u —w € T4 (v, Q), and for every
i €{l,...,n}and for every k > 0 we have
DiTx(u —w) =6u—Djw ae in {{u—w|<k}.
Proposition 2.6. There exists a positive constant co depending onn, g, and |[1/vi |l 1/@;-1 gy § = 1,....n, such

o
that for every functionu € W4 (v, Q)

(n—1)/n 1/ng;

n
/ |u|”/("_l)dx <co l_[ /vi|D,-u|""dx

Q =1 \Q
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3 Statement of the Dirichlet problem. The concept of its entropy

solution

Letcy,co > 0, g1, 82 € LI(Q), g1, 82 = 0in Q, and let forevery i € {1,...,n} a; : 2 xR" — Rbe a

Carathéodory function. We suppose that for almost every x € Q and for every £ € R”,
n n
D) D (x)ag ()99 < e Y v (0617 + g1(x),
i=1 i=1

n

D a0 =2y viIEN - ga2(x).

i=1 i=1

Moreover, we assume that for almost every x € Q and for every §,&" € R", £ # £/,

Y lai(x.§) —a; (x.6)] (& — &) > 0.

i=1

Now we give one result of [20] which will be used in the sequel.

Proposition 3.1. The following assertions hold:
o]
a) ifu,we W9, Q)andi € {1,...,n}, then a; (x, Vu)D;w € L'(Q);
o

b) ifue T, Q) we W1, Q) NL®Q) k > 0andi € {1,....n}
then a; (x,8u)D; T (u — w) € L1(Q).

Let F : @ x R — R be a Carathéodory function. We consider the following Dirichlet problem:
79
-y S oai(x,Vu) = F(x,u) in @,
i=1 "

u=0 ondf2.

o
Definition 3.2. An entropy solution of problem (1), (8) is a functionu € TV9 (v, Q) such that:

F(x,u) € LY(Q);

[¢]
for every function w € W19 (v, Q) N L°°(Q) and for every k = 1

/{Zai(x,Su)DiTk(u—w)}dx $[F(x,u)Tk(u—w)dx.
Q

Q i=1

“)

(&)

(6)

@)

®)

©))

(10)

Note that the left-hand integral in (10) is finite. It follows from assertion b) of Proposition 3.1. The right-hand integral

in (10) is also finite. It follows from the boundedness of the function Tk and inclusion (9).

4 Main result

Next theorem is the main result of this paper.

Theorem 4.1. Suppose the following conditions are satisfied:
1) fora.e. x € Q the function F(x,-) is nonincreasing on R;
2) forany s € R the function F(-,s) belongs to L1(Q).
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Then there exists an entropy solution of the Dirichlet problem (7), (8).

Proof. According to the approach from [1], we will consider a sequence of the approximating problems for the
equations with smooth right-hand sides. Then we will obtain special estimates of the solutions of these problems.
Finally, we will pass to the limit. The proof is in 9 steps.

Step 1. We set f = F(-,0). Letforevery l € N, F; : 2 x R — R be the function such that
Fi(x,s) =T;(f(x) — F(x,s)), (x,s)eQxR.
By virtue of condition 1), we have:
if I € N, then for a.e. x € Q the function Fj(x, -) is nondecreasing on R. (11)

Further, in view of condition 2), we have f € L' (). Hence there exists { f;} C C§°(R2) such that:

lim | f; — fllLi@) =0, (12)
[—00
VIieN I/l S N f L) (13)

Using the inequalities (4)—(6), property (11), and well-known results on the solvability of the equations with
o
monotone operators (see for instance [26]), we obtain: if [ € N, then there exists the function u; € whaw, Q)

(o)
such that for every function w € W14 (v, Q)

f % Z a;(x,Vu;)D;jw + F;(x,u;)w} dx = [flw dx. (14)
Q

o li=l1

o
It means that the function u; € W19 (v, Q) is a generalized solution of the Dirichlet problem:
29
- —ai(x.Vu) + Fi(x.u) = f; in Q,
= i

u=0 ondQ.

We denote by ¢;, i = 3,4,..., the positive constants depending only on n, g, c1, ¢2, |g1llL1(0). 1€2llL1(0)-

£ty IFC =Dzt 1FC DliLiey, 11/vill17@-n ).t = 1.....n, and meas €.
Let us show that for every k > 1 and [ € N the following inequalities hold:

n
> viIDiuzl""}dx < cak, (15)
fuyl<ky =1

| Fr(x,u;)|dx < ca. (16)
{lu; 1=k}

o o
Infact,letk > land/ € N. Asu; € W9(v, Q), we have Tx (u;) € W9 (v, Q). In view of (14) and (13) we
obtain

/{Zai(x,Vuz)DiTk(uz) + Fr (e up) T (up) p dx < k| fll L1 -

i=1
Using (2) and (5) in the left-hand side of this inequality, we get

n
2 [ ZvilDiuzl‘“}dx+/Fz(x,u1)Tk(uz)dx <kl flloie) + 1g2llLr@)- a7
tufl<ky =1 Q
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Assertion (11) and properties of the function 7y imply that

Fi(x,u;)Tir(u;) = 0ae. in Q, (18)

Fr(x,up)Ti (ug) = k| Fr(x,up)| ae. in {|u;| = k}. (19)
The estimate (15) follows from (18) and (17). Finally, the inequality (16) follows from (19) and (17).

Step 2. Now we show that forevery k > 1and/ e N

meas{|u;| = k} < esk™9, (20)

meas{vl.l/qi|D,~u1| >k} < Cék—ql‘@/(l-i—@)’ i=1,...,n. 1)

In fact,letk = 1 and [ € N. We have |Tx (u;)| = k on {Ju;| = k}; then

k" =D meas{|u;| = k} < / | Ty ()| "~ Ddx. (22)
Q

Using Proposition 2.6, (2) and (15), we obtain

(n—1)/n n
(/ |Tk(u1)|”/("_1)dX) < co l_[ (
&

1/ngq; -
ui|Diu,|qt‘dx) < cole3k)'/9.
=1 )<k}

The inequality (20) follows from the latter estimate and (22).
Next, we fixi € {1,...,n}, and set

ks = k97/0FD G = fuy| < ke, v/ | Djuy| = k)

1

We have
meas{vl.]/qf |Diju;| = k} < meas{|u;| = k«} + meas G. (23)

From (20) it follows that
meas {|u;| = k«} < cs5k; 9. (24)

Moreover, in view of the set’s G definition and (15) we get
k% meas G < vi |Djuyl9 dx < czky.
{ugl<ks}
The inequality (21) follows from the latter estimate and (23), (24).
[e]
Step 3. Assertions (2) and (15) imply that for every k > 1 the sequence {Tk (1;)} is bounded in W14 (v, Q). As the

(o) ]
space W19 (v, Q) is reflexive, then there exist an increasing sequence {/;,} C N, and sequence {zx} C W14 (v, Q)
[e]

such that for every k € N we have a weak convergence Ty (1;,) — zx in W14 (v, Q). Without loss of generality it
can be assumed that o
VkeN  Ti(u;) — zx weakly in W9 (v, Q). (25)

Step 4. Let us show that the sequence {u;} is fundamental on measure.
Indeed, letk = 1,1, j € N.Wefixt > 0,and set G’ = {|u;| <k, |u;| <k, |u; —u;| = t}. Itis clear that

meas {|u; —u;| =1} < meas{|u;| = k} + meas {|u;| = k} + meas G'. (26)

Ast < |Tx(u;) — Tk (u;)| on G’, we obtain

tmeasG/§/|Tk(ul)—Tk(“j)|dx-
Q
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This inequality, (20) and (26) imply that for every k > l,and [, j € N

meas {|[u; —u;| =t} < 2e5k™4 417! / |Ti(uy) — Tx (uj)| dx. 27
Q

Let & > 0. We fix k € N such that
2e5k79 < ¢g/2. (28)

Taking into account (25) and Proposition 2.1, we infer a strong convergence Tx (1;) — zx in L' (). Then there
exists N € N such that forevery/, j e N,/,j = N

f | T (uy) — Ty (uj)| dx < et /2.
Q

From this inequality, (27), and (28) we deduce that forevery [/, j e N,I,j = N
meas {|u; —u;| >t} <e

This means that the sequence {u;} is fundamental on measure.

Step 5. Now we show that for every i € {1,...,n} the sequence {”i] /4i Dj;u;} is fundamental on measure.
Foreveryt > 0and/, j € N we put

n
Ni(l,j) = meas{ Z vl.l/qi |Diu; — Djuj| = t}.

i=1
Besides, forevery t > 0, i,k = 1,and [, j € N we set
n n n 1
. 1/q; 1 i 1 1
Erpi. )= v Dju=Diuj| = 1y v} Djuy| < b)Y v} Djus| < hojuy —ujl<it-
i =1 i=1 i=1

Using (21), we establish that foreveryt > 0,h > n,k > 1,and/, j € N
Ni(l,j) < 2c6n"T1h=4=9/0+D 4 meas {ju; —u;| = 1/k} + meas E; j 1 (L, j). (29)

Further, we get one estimate for some integrals over E; 5 x (/, j). So we introduce now auxiliary functions and sets.
Letforevery x € Q @y : R” x R” — R be a function such that for every pair (§,£’) € R” x R”

D) =) ai(x.§) —a;i (x.€)] (& — &)).

i=1
Recall thata;, i = 1,...,n, are Carathéodory functions, and inequality (6) holds for almost every x € Q and every

£,6" € R", & # &' Then there exists a set E C 2, meas E = 0, such that:

(i) for every x € Q\E the function ®, is continuous on R” x R";
(ii) forevery x € Q\E and £,&" € R, & # &, we have O, (§,&") > 0.

Put forevery t > 0, h > t,and x €
n n n
Gra()=](.&) e R" xR": Y v )& < h. Y v}/ T @lg/l <h Y v}/ (x)lg — 8]l = ‘}
i=1 i=1 i=1

Asv; > 0ae.in,i =1,...,n, then there exists aset E C , meas E = 0, such that the set G 5 (x) is nonempty
foreveryt >0, h > t,and x € Q\E.
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Letforeveryt > 0andh >t ;5 : Q2 — R be a function such that

min ®,, if x € Q\(E U E),
Gn(x)

0, ifxe EUE.

Men(x) =

Foreveryt > Oand h > ¢ we have ju; 5 > Oa.e.in 2, and pu; 5 € LY(Q).
Lett >0,h>t+1,k > 1,and/, j € N.Wefixx € E; (I, ))\(EUE), and set§ = Vu;(x),& = Vu;(x).
As (§,&") € Gy p(x), then s p(x) < Dy (£, €'). This inequality and function’s @, definition imply that

pen(®) < ) lai(x, Vg (x)) — ai (x, Vuj ()] (Diug (x) = Dy (x)).

i=1

Then, taking into account (6) and (2), we obtain

[ Kipdx < / { > lai(x, Vuy) —ai (x, V)| Di Ty i (g — uj)} dx. (30)

Erni(.)) Q =l

In view of (14) we have

[{Zal(x Vu)D; T (s —u,)§dx —/szl/k(uz —up)dx =~ [ it Tito — ) dx.
Q

Q i=1

[{Zal(x Vu;)D;Ty/x(u; —u;)}dx —/f]Tl/k(uj —ul)dx—/F (o u)T x(uj —up)dx.
Q =l Q
From these equalities and (30) it follows that

1 1
[ wenax<g [1n=prax+ o [ 1R - Feoaplax G
Etni(.J) Q 2

Using (16) and conditions 1), 2), we find that for every /, j € N

/ |Fi(x,u;) — Fj(x,u;)|dx < c7.

From the latter estimate and (31) we deduce that forevery ¢ > 0, h = ¢t 4+ 1, k = 1,and [, j € N the following
inequality holds:

/ o dx < /m fildx+ 2. (32)
Eini(l.J)

The sequence {u;} is fundamental on measure. Then there exists an increasing sequence {nx} C N such that for
everyk e Nand!/,j e N,/, j = ng, we have

meas{|u; —u;| = 1/k} <1/k. (33)

Lett > 0and ¢ > 0. We fix h = ¢ + n such that

2een” T p=4-2/0+D < ¢ /4. (34)
Put for every k € N
ar = sup meas E; 5 (1, j).
l.j=ng

Let us show that oy — 0. Assume the converse. Then there exist t > 0, an increasing sequence {ks} C N, and
sequences {/s},{js} C N such that for every s € N we have Iy, jy = ng, and

meas E; p i, (s, Js) = T (35)
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Let Gy = Et,h,k_\' (s, js), s eN.
In view of (32) and (13) for every s € N we get

2

/ﬂt,hdx§ &+ .
ks

Gs

It follows that

Sl_l)rgo/u,.h dx = 0.
Gy

From this assertion, taking into account j; 5 € L'(Q) and We.n > 0ace. in 2, we infer that meas Gy — 0. This
fact is in contradiction to (35). Hence, we conclude that o — 0.
Finally, we fix k € N such that the inequalities hold:

1/k <e/4, ar <¢e/2. (36)

Let/,j € N, [, j = ng. From (29), (33), (34) and (36) it follows that N; (I, j) < e.
This means that for every i € {1,...,n} the sequence {vl.l/ 9t D;u;} is fundamental on measure.

Step 6. From results of the Steps 4 and 5, and F. Riesz’s theorem we get the following facts: there exist measurable
functionsu : @ — Rand v® : Q — R, i =1,...,n, such that the sequence {u;} converges to u on measure, and
for every i € {l,...,n} the sequence {vl.1 /di Djuy} converges to v on measure. As is generally known, we can
extract subsequences converging almost everywhere in €2 to the corresponding functions. We may assume without
loss of generality that

u; — u a.e.in 2, (37)

Vie(l,....ny v/ Diu; - v® aeinQ. (38)

From (37), (25) and Proposition 2.1 we deduce that for every k € N

Te(u) € W91, Q). (39)

Ty (ug) — Ti (1) weakly in W9 (v, Q). (40)

o
Let us show that u € 719(v, Q). Indeed, let k > 0. Take h € N, i > k. In view of (39) we have Tj,(u) €
o [¢]
W14y, Q). Hence, by inclusion (3) we obtain Tk (T (1)) € W1-9(v, Q). This fact and the equality T (u) =
[e] [¢]
Ti (Ty, (1)) imply that Ty (1) € W19 (v, Q). Therefore, u € 719 (v, Q).

Step 7. Now we show that

Vief{l,...,n} Dju; — 8;u a.e.in Q. 41)
In fact, leti € {1,...,n}. In view of (37) there exists a set £’ C 2, meas £/ = 0, such that
VxeQ\E ug(x) = u(x), (42)

and in view of (38) there exists a set E” C 2, meas E” = 0, such that
Vxe Q\E” v/ (x)Dju;(x) = v (x). (43)
Fix k € N. By (2) we have: if [ € N, then there exists a set E® c Q, meas ED = 0, such that
Vxedflul <kN\NED  D;Ti(up)(x) = Diug(x). (44)

We denote by £ a union of sets E/, E” and E), | € N. Clearly, meas E = 0. Let x € {|u| < k}\E. In view
of (42) there exists o € N such that for every [ € N, [ > Iy, we have |u;(x)| < k. Let! € N, [ = [y. Then
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x € {|u;] < k}\E® and according to (44) we get vl-l/qi (X)D; Ty (uy)(x) = vil/q’ (x)D;u;(x). From this equality
and (43) we deduce that vi]/q" D; T (u7)(x) — v@ (x) . Thus,

v D T (uy) — v aein {lu| <k} (45)
Besides, in view of (2) and (15) for every [ € N
/vi|DiTk(u1)|qf dx < c3k. 46)
«Q

Using Fatou’s lemma, from (45) and (46) we infer that the function |v?|%/ is summable in {|u| < k}.

Further, let ¢ : 2 — R be a measurable function such that |@| < 1in €, and let € > 0. As the function |v@| is
summable on {|u| < k}, then there exists 1 € (0, £) such that for every measurable set G C {|u| < k}, meas G <
£1, we have

/|v<i>|dx <e. @7)
G

Moreover, in view of (45) and Egorov’s theorem, there exists a measurable set Q" C {|u| < k} such that

meas ({|u]| < k}\Q') < e, (48)
ul.l/quiTk (u7) — v uniformly in €. (49)
From (47) and (48) we infer that
0@ dx < e, (50)
{lul<k i\’

and from (49) we deduce that there exists /1 € N such that forevery / e N, [ > [,
/|vi1/qiDiTk(u1)—v(i)|dx$8. (51)
Q/

Let/ € N, [ = ;. Using (50), (51), Holder’s inequality, (48), and (46), we get

(v} D; Ty (ug) — v D] @ dx| < 26 + f v! 9Dy Ty (ug)| dx
{lul<k} {lul<ki\Q’

1/qi
< 26 + 4T D/di (/ vi | D Tk (ur)| % dX) < 2e + 9T/ i (e5f) 1/ 40

Since ¢ is an arbitrary constant, from the latter estimate it follows that

Jim / (v} D; T () —v P g dx = 0. (52)
{ul<k3

o] ]
On the other hand, let F : W19 (v, Q) — R be a functional such that for every function v € W19 (v, Q)

(F,v) = / vl.l/qiDiv-wdx.

{lul<k}

o
It is easy to see that F e (W19 (v, Q))*. Hence, by virtue of (40), we have

(F, Tk (up)) — (F, T (n)).
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This fact and functional’s F definition imply that

lim v D Ty (uy) - 9 dx = / v! 9D Ty (u) - ¢ dx. (53)

{ul<k} {lul<k}

From (52) and (53) we deduce that

[v® !9 D; Ty ()] @ dx = 0.

{lul<k}

In turn, from this equality and Proposition 2.1 we infer that
v = vl.l/qiSiu ae. in {|u| <k}.
Since k € N is an arbitrary number, from the latter assertion it follows that
v® = vil/q"(?iu a.e.in Q. (54)

Taking into account that v; > 0 a.e. in €2, from (38) and (54) we obtain that D;u; — §;u a.e. in Q. Thus, (41) is
proved.
Assertion (41) along with the fact thata;, i = 1,...,n, are Carathéodory functions implies that

Viefl,...,n} a;j(x,Vu;) = a;(x,6u) ae.in Q. (55)

Step 8. Let us show that the following assertions are fulfilled:

F(x,u) € LY(Q); (56)
Fy(x,u;) — f — F(x,u) strongly in L' (Q). (57)

Indeed, in view of (37) we have
Fi(x,u;) > f — F(x,u) a.e.in Q. (58)

Moreover, using (16) and conditions 1) and 2), we get for every / € N

/ |F7(x,u;)|dx < cg.
Q

From this fact, (58), and Fatou’s lemma we obtain inclusion (56).
Now let us prove (57). Firstly, we establish that for every k, [ € N the following estimate holds

|Fy (o) dx < / Fldx +1fr = Flliie + 2lg2ll1 gk (59)
{u; =2k} {lu 1=k}

Let z € C'(R) be a function such that 0 < z < 1onR, z = 0 on [-1;1], z = 1 on (—o00; —2] U [2; +00), and for
every s € R z/(s)signs = 0, |z/(s)] < 2.
We fix arbitrary k, [ € N. We denote by zx : R — R a function such that for every s € R

s s
zk(s) =T (E) z (E) . (60)
From the properties of the functions 77 and z it follows that for every s € R
|zx (s)] < 1. (61)
Besides,

Vs €R, |s| <k, zx(s)=0; (62)
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Vs e R, |s| =2k, |zx(s)| = 1. (63)
Definition (60) implies that z (u;) € W19 (v, Q) and
Diz(uy) = k=12 (%) Ty (%’) Diu; aeinQ, i=1,...n. (64)

Substituting w = zx (u;) into (14), and using (61), (62), we get

n
[ X atrvupiznax+ [ Aeamands < [ ifldxcsin - flo. ©9)
@ =1 Q 1=k}
We denote by / ,2 ; the first integral in the left-hand side of (65). In view of the function’s z definition

Vs eR, |s| <k, or |s| =2k, |Z/(s)|] =0. (66)

Using (64), (66), and (5), we establish that

I];,l — k—l / |:2’ (%) T] (%) { Zn:ai(x,Vul)Diu,=:| dx
i=1

tk<|u;|<2k}
n
> k! / [%(L]l{l)ﬂ(1:){62;Vill)iullq"—g2”dx- (67)

{hk<|u;|<2k} =

From the truncated function’s property and our condition z’(s)sign s = 0, Vs € R, it follows that almost everywhere
in {k < |uy| <2k}
up 22} ury . up
z’ (—) T (—) =7z (—) sign (—) = 0.
k) Uk k) ek
Taking into account this fact and our condition |z’ (s)| < 2, Vs € R, we deduce from (67)

I, = =2k / g2 dx.

(k<lu;1<2k}

This and (65) imply
/Fl(x,ul)zk(ul)dx < [ |fldx + 1 fi = flloi) + 2lg2llpr@apk ™ (68)
Q {u 1=k}

Note that in view of (11) and the function’s zx definition we have
Fi(x,u;)zx(u;) = 0ae.in Q,

and in view of (63) we get
Fr(x,up)zi(ug) = [Fr(x,up)| ae. in {Ju;| = 2k}.

Then
/ FyCeou)zic(up) dx = / |Fy (e, up)| dox.
Q {lu;|=2k}

Finally, assertion (59) is derived from the latter inequality and (68).
Next, we fix an arbitrary ¢ > 0. It is clear that there exists €1 > 0 such that for every measurable set G C €,
meas G < g,

/(Ifl L Fa)dx <e.
G
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We fix k € N such that the following inequalities hold:

2l g2ll L1k~ <e.

csk™? < ¢gy.

By condition 2), we infer that the functions F(-, —2k) and F(-,2k) belong to L' (). Hence, there exists &>

such that for every measurable set G C 2, meas G < &>,

/(|F(-,—2k)| +|F(-2K)) dx <e.
G

In view of (58) there exists a measurable set 21 C 2 such that
meas (2 \ Q1) < min(eyq, &2),
and Fj(x,u;) — f — F(x,u) uniformly in €. Then there exists L; € N such that forevery/ e N,/ > Ly,
[ 1 =7 - el dx <
2

Besides, in view of (12) there exists L> € N such that forevery/ e N, [ = L,

17— flloie <e
Now fix [ € N, [ = max(L1, L»). Using (71) and (72), we obtain
IFcn = (f = Foealey < [ IBGanlds+ [ RG]y o+ 2e
{us1=2k} (Q\21)N{lu <2k}
By virtue of (20) and (70) we get meas {|u;| = k} < &1. Then
[ | fldx <e.
{ug 1=k}
From (59), (69), (73) and (75) we deduce
|Fr(x,u;)|dx < 3e.
{u =2k}

Note that by condition 1), we have
|Fr(x,up)| < 2(|F(x,=2k)| + |F(x,2k)|) a.e. in {Ju;| < 2k}.

In view of (71) we get
/ (|F(x,=2k)| + |F(x,2k)|)dx < e.
Q\Q,
From (77) and (78) it follows that

| Fr(x,u;)|dx < 2e.
@\2)N{lu; <2k}

Using (74), (76), and (79), we infer

1F7(eoup) = (f = F(x,w) 1) < Se
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Now we can conclude that || F; (x,u;) — (f — F(x,u))||1() — 0. Thus, assertion (57) is proved.

(o)
Step 9. Letw € W19 (v, Q) N L°°(R), and k = 1. Now we show that

/{Zai(x,Su)DiTk(u—w)}dxS/F(x,u) T (U —w)dx.
«Q

Put
H={lu—w| <k}, Hy={u—wl =k}

and let for every [ € N
H; ={|lu; —w| <k}\Hoy, E;={u;—w|<k}nN Hy.

First of all we prove that for every function ¢ € L ()
/(pdx — /(pdx.
H; H
Indeed, let ¢ € L' (Q). For every j € N put
HY ={u—w|<k—-1/j},  HY ={ju—w|>k+1/j}.

We have
meas (H\H") - 0, meas ({ju —w| > k}\HY)) > 0.

(80)

1)

(82)

We fix an arbitrary ¢ > 0. In view of the property of Lebesgue integral’s absolute continuity and (82) there exists

j € N such that
[ lp|dx < e/4, / lp|dx < e/4.

H\H) {lu—w|>kI\H W

(83)

Moreover, in view of the property of Lebesgue integral’s absolute continuity, (37), and Egorov’s theorem there exists

a measurable set Q' C  such that
lp|dx < e/4,
Q\Q’

u; — u uniformly in Q’.
Assertion (85) means that we can find /oy € N such that forevery [ € N, [ = [y, and x € Q’
g (x) —u(x)| < 1/j.
Let! € N, [ = lp. From (86) it follows that
(HY\H)NQ =0, {lu —w| <k}NnHY) NQ = 0.

Then
H\H; C (H\HY)U(Q\Q), H\H C ({ju—w|>kN\HY)U(@Q\Q).

These facts, (83), and (84) imply that

/ lp|dx < g/2, / lpldx < €/2.

H\H,; H\H

‘/(pdx—/(pdx
H; H

Hence,

<e.

The latter estimate means that (81) is true.

(84)

(85)

(86)
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Further, put
n
ki =k+ ||w||Loo(Q), ¢1 = Zai(stTkl—l—l(u)) Diw,
i=1

and let for every / € N
n

Y1 =Y a;(x.Vuy) Dju; + g2,

i=1

S/ = / % Z lai (x,Vup) —a; (x, VTx,+1W))] Diw} dx,

g, i=1
n
51”2/{2 a; (x, Vw) [Diul—Diw]}dx.
El l=1

We fix an arbitrary / € N. In view of (14) we have

/ { > ai(x, Vuy) D; Tie(uy — w)}dx = /(fz — Fir(x.up)) Ty (uy — w)dx. (87)
Q Q

i=1

Using (2) and (6), we get

/ % Z ai(x,Vu))D;i Ty (u; — w)}dx = / { Z aj(x,Vuy)[Dju; — Dijw]; dx + Sl/,'

From this inequality and (87) we obtain

n n

/ % Z ai(x,Vul)Diug}dx < / { Z a,-(x,VuZ)Diw}dx
H;

i=1 b, i=1

+ [ Ui = Firan) Tetu — wydx = s7.
«Q

Hence, for every / € N

[wdx< [(r- R T - wdx + [ @+ dx+ ;-7 (88)
H «Q H,

Note that by virtue of (12) and (37) we get f; T (u; — w) — f Tx (u — w) strongly in L1 (). Therefore,

/flTk(u;—w)dx—>/ka(u—w)dx. (89)
Q Q

Besides, in view of (57) and (37) we obtain F; (x,u;) Tk (u; — w) — (f — F(x,u)) Tx (u — w) strongly in L1 ().
Hence,

/Fg(x,ul) T (u; —w)dx — /(f — F(x,u)) Tx(u — w) dx. (90)
Q Q

o ]
Asu € T19(v,Q), then we have Tx (1) € W1-4(v, Q). Therefore, assertion a) of Proposition 3.1 implies an
inclusion @1 € L1(Q). Besides, we have g» € L (). Thus, using (81), we deduce that

/(901 + g2)dx — /((01 + g2)dx. 1)
23 H

Now we prove that
S 0. (92)
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Indeed, let ¢ € (0, 1). In view of the property of Lebesgue integral’s absolute continuity, (37), (55), and Egorov’s
theorem there exists a measurable set 21 C 2 such that

n
/ {|¢1I+Zw|Diw|‘“}dxs8”, (93)

o\, i=1
u; — u uniformly in Qp, 94)
n n
Z aj(x,Vu;) Diw — Z ai(x,éu) D;jw iniformlyin 1. 95)

i=1 i=1

Assertion (94) means that we can find /o € N such that forevery/ € N, [ = g, and x € Q2
luz(x) —u(x)| < e. (96)

Moreover, in view of (95) there exists /; € N such that forevery [ € N, [ = [1, we get
n n

/ Z ai(x,Vul)Diw—Z a;(x,d0u) D,-w’des. 97

Let/ € N, I = max(lp,l1). As w € L (), there exists a set £ C Q, meas £ = 0, such that for every x € Q\E
we have |w(x)| < ||w| Lo (). From this fact and (96) it follows that (H; N QU\E C {|u| < ki + 1} Using this
inclusion, Proposition 2.4, and (97), we obtain

n

Z ai(x,Vu;) Dijw —¢1|dx < e.
H;N2, i=l1
The latter inequality and (93) imply that
n
S]] <26+ ) / la; (x, Vuy)| | Djw| dx. (98)

=lgaQ,

Taking into account Holder inequality, (4), an inclusion H;\E C {Ju;| < k1}, (15), and (93), we established that
foreveryi € {1,...,n}

/ lar (e Vup)| | Diwl dx < (cresky + 1+ g1 121a)e.
H\2

From this and (98) we deduce
IS/l <2e+n(ciezkr + 1+ lgillLre))e

Thus, (92) is true.
Further, we show that
S/ — 0. 99)
o [¢]
It suffices to take meas Ho > 0. Leti € {1,...,n}. Sinceu € 719 (v, Q) and w € W9 (v, Q) N L°°(Q), by virtue

[e]
of Proposition 2.5, we have u —w € 719 (v, Q). Hence, from Proposition 2.4 it follows that
DiTx(u—w)=0 ae.in Hp. (100)

On the other hand, for almost every x € Ho the inequality |u(x)| < k1 + 1 holds. So, Tx (u —w) = T, +1(u) —w
a.e. in Hy. Therefore,
DiTx(u—w)=D;Tk,+1(u) —D;w ae.in Ho.
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Then, taking into account (100), we get D; Tx,+1(u) = D;w a.e. in Ho. This and Proposition 2.4 imply that

8;u = D;w a.e. in Hp. From this result and (41) we infer that for every i € {1,...,n} Dj;ju; — D;w a.e.in Hp.
Hence,

n

Z ai(x,Vw)[Dju; — Djw] - 0 ae.in Hp. (101)

i=1
Next, we put

n n
92 =Y la;(x.Vw)||Djwl, o3 =Y (1/v)"/ 4= Djg; (x, V)| 4/ @ =D,

i=1 i=l1

In view of (4) the functions ¢> and @3 are summable in 2.
We fix an arbitrary ¢ > 0. In view of the property of Lebesgue integral’s absolute continuity, (101), and Egorov’s
theorem there exists a measurable set 2> C Hg such that

/ (p2 +@3)dx <, (102)
Ho\S22
n
Z aij(x,Vw) [Dju; — Djw] — 0 iniformly in 5.
i=1
The latter property means that me can find /o € N such that forevery [l € N, [ > [,

n
> ai(x.Vw) [Dju; — Djw] ‘ dx <e. (103)
QZ l=1

Let/ € N, = [p. Using (102) and (103), we infer that

n
1S71 <264+ f la; (x, Vw)| |Dju;| dx. (104)
=lg\e,

By the virtue of Holder inequality, (102), and (15) we deduce that for every i € {1,...,n}

la; (x, Vw)| |Dju;| dx
E\Q22

(qi—1)/qi 1/q;
< ( / 3 dx) / v,'|Dl'u1|qfdx) < im0 (e3k )1/
En tuyl<ki}

This fact along with (104) and an arbitrariness of ¢ implies that (99) is true.
Further, let y : 2 — R be a characteristic function of the set H, and let forevery/ e N x; : Q — Rbea
characteristic function of the set H;. We have

lim y; = y ae.in Q. (105)
[—o0
Indeed, in view of (37) there exists a set Eg C 2, meas Eg = 0, such that for every x € Q\Eg u;(x) — u(x).
Let x € Q\Eo. If x € H, then y(x) = 0. Hence, y(x) < y;(x), VI € N.Let x € H. As u;(x) — u(x), there
exists /1 € N such that for every [ € N, [ = [y, we have |u;(x) — u(x)| < k — |u(x) — w(x)|. Then for arbitrary
[ e N, [ =1, weget|u;(x) —w(x)| < k. Therefore, x € H; and y;(x) = 1 = y(x). Thus, in any case we have
x(x) < lim y;(x) and assertion (105) holds.

[ —o0
From (105), (41), (55), and (5) it follows that

n
lim (Yyx7) = (Z ai(x,0u)éju + gz))( ae.in Q. (106)
l—o0

i=1
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n
Using (5), (88)-(92), (99), Fatou’s lemma, and (106), we established that the function | > a; (x,8u)dju + g2 | x
i=1
is summable in € and

/{Za,-(x,Su)S,-u+g2}xdxs/F(x,u)Tk(u—w)dx—i—/(qDl + g2)dx.
Q H

i=1
From the latter inequality and Propositions 2.4 and 2.5 we obtain (80).

o
So, we proved that u € Tha (v, ), and properties (9) and (10) of Definition 2.2 are satisfied. Thus, u is an
entropy solution to the Dirichlet problem (7), (8). The theorem is proved. O
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