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Existence and uniqueness of entropy solution for
nonlinear elliptic degenerate anisotropic equations

Yu.S. Gorban
Vasyl Stus National University of Donetsk, Vinnytsia, Ukraine
e-mail: yuliya gorban@mail.ru

Let 2 be a bounded domain in R™ with a boundary 90, n > 2. Assume that
1 < ¢; < n are real numbers, and v; are nonnegative functions in € such that v; > 0
a.e. in Q, v; € LL (Q), v,~Y@1D € L1(Q), i = 1,...,n. Suppose Carathéodory functions
a; : X R® =+ R, ¢ =1,...,n, satisfy the conditions of growth, strict monotonicity and
following coercitivity condition: > i, a;(z,£)& = ¢ > i, vi|&]% — g(z); here c is a positive
constant, and g € L*(Q) is a nonnegative function. Put ¢ = {q1,...,qn}, v = {v1,...,Un}.
We define WhH9(v, Q) = {u € L*(Q) : v;|Diu|® € L} (Q),i=1,...,n}. WH(y,Q) is a Ba-

1/qi
% daz> .

Denote by VOV'l’q(u, ) the closure of C°(Q2) in Wh(r, Q). Let F : QO xR — R be a
Carathéodory function. We consider the Dirichlet problem:

nach space with respect to the norm ||u||lwiewq) = ||ullri@) + > iy (fQ vi| Diu

0
—,‘Z —a;(z, Vu) = F(z,u) i Q, (1)
= 0%
u=0 on OS2 (2)
Definition. An entropy solution of problem (1), (2) is a function u : Q — R such

that: 1) Ty(u) € T%/l’q(y, 1), where T} is a standard cut function of the level k > 0;
2) F(z,u) € L}(Q);

3) if w € WH(u, Q) N L®(Q), k> 1, and I > & + ] oy, then

/Q { im, VI (u))DTh(u — w)}daz < /Qp(x,u) T (u — w)dz.

1=1

Theorem. Suppose the following conditions are satisfied: (i) for a.e. x € €0 the
Sfunction F(z,-) is nonincreasing on R; (i) for any s € R the function F(-,s) belongs to
LY(Q). Then there ezists an unique entropy solution of problem (1), (2).

Proof is based on results represented in [1], [4].
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